3.195 \(\int \frac {x^7}{(b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=33 \[ \frac {b}{2 c^2 \left (b+c x^2\right )}+\frac {\log \left (b+c x^2\right )}{2 c^2} \]

[Out]

1/2*b/c^2/(c*x^2+b)+1/2*ln(c*x^2+b)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {1584, 266, 43} \[ \frac {b}{2 c^2 \left (b+c x^2\right )}+\frac {\log \left (b+c x^2\right )}{2 c^2} \]

Antiderivative was successfully verified.

[In]

Int[x^7/(b*x^2 + c*x^4)^2,x]

[Out]

b/(2*c^2*(b + c*x^2)) + Log[b + c*x^2]/(2*c^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {x^7}{\left (b x^2+c x^4\right )^2} \, dx &=\int \frac {x^3}{\left (b+c x^2\right )^2} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x}{(b+c x)^2} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (-\frac {b}{c (b+c x)^2}+\frac {1}{c (b+c x)}\right ) \, dx,x,x^2\right )\\ &=\frac {b}{2 c^2 \left (b+c x^2\right )}+\frac {\log \left (b+c x^2\right )}{2 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 27, normalized size = 0.82 \[ \frac {\frac {b}{b+c x^2}+\log \left (b+c x^2\right )}{2 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/(b*x^2 + c*x^4)^2,x]

[Out]

(b/(b + c*x^2) + Log[b + c*x^2])/(2*c^2)

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 35, normalized size = 1.06 \[ \frac {{\left (c x^{2} + b\right )} \log \left (c x^{2} + b\right ) + b}{2 \, {\left (c^{3} x^{2} + b c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^2,x, algorithm="fricas")

[Out]

1/2*((c*x^2 + b)*log(c*x^2 + b) + b)/(c^3*x^2 + b*c^2)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 32, normalized size = 0.97 \[ -\frac {x^{2}}{2 \, {\left (c x^{2} + b\right )} c} + \frac {\log \left ({\left | c x^{2} + b \right |}\right )}{2 \, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^2,x, algorithm="giac")

[Out]

-1/2*x^2/((c*x^2 + b)*c) + 1/2*log(abs(c*x^2 + b))/c^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 30, normalized size = 0.91 \[ \frac {b}{2 \left (c \,x^{2}+b \right ) c^{2}}+\frac {\ln \left (c \,x^{2}+b \right )}{2 c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(c*x^4+b*x^2)^2,x)

[Out]

1/2*b/c^2/(c*x^2+b)+1/2*ln(c*x^2+b)/c^2

________________________________________________________________________________________

maxima [A]  time = 1.29, size = 32, normalized size = 0.97 \[ \frac {b}{2 \, {\left (c^{3} x^{2} + b c^{2}\right )}} + \frac {\log \left (c x^{2} + b\right )}{2 \, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(c*x^4+b*x^2)^2,x, algorithm="maxima")

[Out]

1/2*b/(c^3*x^2 + b*c^2) + 1/2*log(c*x^2 + b)/c^2

________________________________________________________________________________________

mupad [B]  time = 4.18, size = 29, normalized size = 0.88 \[ \frac {\ln \left (c\,x^2+b\right )}{2\,c^2}+\frac {b}{2\,c^2\,\left (c\,x^2+b\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(b*x^2 + c*x^4)^2,x)

[Out]

log(b + c*x^2)/(2*c^2) + b/(2*c^2*(b + c*x^2))

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 29, normalized size = 0.88 \[ \frac {b}{2 b c^{2} + 2 c^{3} x^{2}} + \frac {\log {\left (b + c x^{2} \right )}}{2 c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(c*x**4+b*x**2)**2,x)

[Out]

b/(2*b*c**2 + 2*c**3*x**2) + log(b + c*x**2)/(2*c**2)

________________________________________________________________________________________